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Abstract
Zipf’s Law of Abbreviation (ZLA) states that the more fre-
quently a word is used, the shorter its length tends to be. This
arises due to the optimal trade-off between competing pres-
sures for accuracy and efficiency in communication, known as
the Principle of Least Effort. Existing research has not focused
on how individuals adapt their language use to remain optimal
despite language change and whether social factors like com-
mon ground affect this. To investigate this, we replicated and
extended the artificial language learning paradigm and com-
munication game of Kanwal et al. (2017). We found partici-
pants were able to re-optimize their language use according to
ZLA after a language change event, but this ability was ham-
pered by common ground. This research identifies common
ground as one potential cause for observed sub-optimalities in
human languages and may have implications for understanding
the dynamics of language change across communities where
common ground varies.
Keywords: Zipf; Principle of Least Effort; optimality; lan-
guage change; common ground

Introduction
Languages exhibit optimality in a remarkably large number
of ways from their sound systems (Everett, Blasi, & Roberts,
2016; Everett, 2017), word length distributions (Zipf, 1935),
and semantic systems (Kemp, Xu, & Regier, 2018), to the
ways they categorize color (Zaslavsky, Kemp, Regier, &
Tishby, 2018), kinship relationships (Kemp & Regier, 2012),
and numeral systems (Xu, Liu, & Regier, 2020). Each one of
these observations is presumably the outcome of an adaptive
process which created a goodness of fit between linguistic
structures and their environments of use. However, relatively
little is known about the processes that give rise to and main-
tain optimality in language.

In this paper, we address one particular type of optimality
in language, known as Zipf’s Law of Abbreviation or ZLA
(Zipf, 1935). ZLA identifies an inverse relationship between
the frequency of words in human languages and their asso-
ciated word length and posits that this relationship is due to
the Principle of Least Effort (Zipf, 1949), where the com-
peting communicative pressures of accuracy and efficiency
(Kanwal, Smith, Culbertson, & Kirby, 2017; Kirby, Tamariz,
Cornish, & Smith, 2015; Piantadosi, Tily, & Gibson, 2012;
Tamariz & Kirby, 2016; Urbina & Vera, 2019) leads to the
functional optimization of form-meaning mappings within a
lexicon (Piantadosi, 2014; Piantadosi, Tily, & Gibson, 2011).
When neither or only one of the competing pressures of ac-
curacy and efficiency exist in a language, the distribution
of the lexicon does not respect ZLA (Kanwal et al., 2017;
Chaabouni, Kharitonov, Dupoux, & Baroni, 2019).

A key experimental study by Kanwal et al. (2017) provided
direct evidence linking accuracy and efficiency pressures on
individual language learners to ZLA optimality in the struc-
ture of their lexicon. Participants underwent an artificial lan-
guage learning paradigm, mapping names (zopekil and zop-
udon) to two novel objects with one object being displayed
more frequently. Importantly, both objects could also be re-
ferred to with the same clipped form, zop, making the referent
ambiguous. They found that participants learned to refer to
the more frequent object as zop and to the less frequent object
with its respective long form, which is the optimal mapping
for this task because it maximizes accuracy and minimizes
the average length of the words being used. However, op-
timal mappings emerged only when participants were under
both pressures for accuracy and efficiency. In other words,
language users optimized form-meaning mappings in accor-
dance with the Principle of Least Effort.

Nearly all human languages exhibit ZLA: it is a statisti-
cal language universal (Bentz & Ferrer Cancho, 2016; Ko-
plenig, Meyer, Wolfer, & Mueller-Spitzer, 2017; Mahowald,
Dautriche, Gibson, & Piantadosi, 2018; Pechenick, Danforth,
& Dodds, 2017; Piantadosi et al., 2011) and remains stable
over time (Pechenick et al., 2017). However languages do
change over time (Sankoff, 2018) and the frequencies of ref-
erents change with their relevance to a speech community,
making the words associated with important topics increas-
ingly frequent themselves (Karjus, Blythe, Kirby, & Smith,
2020a, 2020b). ZLA’s stability over time implies that lan-
guages have been able to re-optimize their lexicons as the fre-
quencies of referents change. What factors facilitate or hinder
the re-optimization of language in the face of change?

One factor that could affect language re-optimization is
common ground: the shared knowledge between communica-
tive partners (Brown-Schmidt & Duff, 2016). The construc-
tion of common ground has been found to drive communica-
tive success (Huggett, Peña, Sulik, & Spike, 2020), as com-
munication can only occur when language users mutually ac-
cept that certain words are associated with certain meanings
(Smith, 2014; Tamariz & Kirby, 2016). Common ground has
also been linked to optimality in a maze game communica-
tion task by Castillo, Branigan, and Smith (2015), showing
that participants with multiple partners converge on optimal
strategies better than pairs do, who instead maintain the first
strategy that works for them even if it is not optimal.

In this study, we investigate the effect of common ground



Figure 1: Screen shots from the communication game. Left: Director’s view when choosing which word to send. Middle:
Director’s view when transmission button appears. Right: Matcher’s view when guessing which object the director had.

on the re-optimization of language with respect to ZLA. We
adopt the same language learning paradigm and communi-
cation game as developed by Kanwal et al. (2017) and add a
novel second round to the task in which the frequencies of the
two objects are reversed. Are participants able to re-optimize
their lexicon to the new object frequencies? To manipulate
common ground, participants either played a new partner in
round two or the same partner again. Do participants with
common ground use less optimal lexicons after the frequency
shift, than participants with no common ground?

Experiment
Participants
Participants were 75 undergraduate students from the Univer-
sity of Melbourne (56 females, 17 males, and 2 non-binary
people). Ages ranged from 18 to 36 (Mage = 20.07, SDage =
3.52). There were 28 English-speaking monolinguals, with
the remaining 47 participants speaking at least one other lan-
guage in addition to English. Condition allocation was on an
alternating basis in the order of who clicked our study link.
Of those participants who completed the study, 38 were as-
signed to the no common ground condition and 37 were as-
signed to the common ground condition. If participants did
not complete the study, their data was not saved.

Stimuli
Stimuli were the same as in Kanwal et al. (2017), consisting
of two novel objects (see Figure 1), two novel 7-letter words
(zopekil, zopudon), and one 3-letter short form (zop). Two
drawings of a robot, which differed in fill color, represented
the participant’s partner(s) in the game (see Figure 2). All im-
ages are distinguishable under the three main forms of colour
blindness according to Color Oracle (colororacle.org).

Procedure
Participants took the experiment online via Google App En-
gine. Each participant completed two rounds of the task.
Each round was divided into two phases: a training phase
and a communication game.

Training phase The training phase consisted of 32 trials.
On each trial, one object was displayed with one word. The

object appeared alone for the first 700ms and with the word
for the next 2000ms. One object was displayed on 24 trials
and the other was displayed on 8 trials. Each object was deter-
ministically mapped to one of the long forms and the mapping
was randomized across participants. Each object appeared
with its long form on half of its trials and the short form
on the other half. For example, object A would appear with
zopekil 12 times and zop 12 times, and object B would appear
with zopudon 4 times and zop 4 times. In round two, the fre-
quencies were reversed (swapping the 12s and 4s above). A
communication game followed each training phase.

Communication game The communication game con-
sisted of 64 trials in which the two partners alternated roles
called director and matcher, such that each participant com-
pleted 32 trials in each role. On each trial, the director viewed
an object along with the two words that had occurred with
it during the training phase. The director then chose one of
the words to send to the matcher using a transmission button.
The button sent the word one letter per second, establishing
a cost for sending the long form. Participants were instructed
to minimize their cumulative transmission time, which was
shown on screen. Then the matcher received the word and
was told to select the object that the director was referring
to. If the matcher guessed correctly, the director and matcher
both received one point. Participants were instructed to maxi-
mize their score, which was also displayed on screen. The fre-
quency of each object in the communication phase matched
its frequency in the training phase.

Word learning algorithm Our procedure differed from
Kanwal et al. (2017) in that we paired each human participant
with a word learning algorithm, rather than a human partner.
This choice allowed us to use a smaller participant pool and
reduced the complexity of the data by ensuring that all partic-
ipants played a partner who was using the same strategy. The
algorithm stored the history of word-object mappings on each
communication trial and selected words or objects on the ba-
sis of the most recent trial (see Figure 2 for the algorithm’s
decision tree). This design allowed the participant to eas-
ily drive the communication system to various word-object
mappings. Participants were informed at the beginning of the
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Figure 2: The director and matcher algorithms used by the
robot partner in the communication game in the experiment.

experiment that their partner would be a word learning robot.

Condition Two conditions manipulated common ground.
In the common ground condition, participants were told that
they would be playing the same robot partner in both of the
rounds and consequently played the same algorithm whose
memory included all trials in rounds one and two. In the no
common ground condition, participants were told they would
be playing two different robots. In this case, the algorithm
was re-initialized between rounds, causing it to lose all mem-
ory of the trials in round one.

Results
All analyses were conducted in R, with statistical significance
being determined at the level of p < .05.

Experiment Replication
Round one of our experiment successfully replicated the com-
bined effects condition in Kanwal et al. (2017) in a human-
robot communication paradigm. Figure 3 shows participant
behavior in terms of the four main strategy types: ZLA, using
the short word for the frequent object and the long for the in-
frequent, lazy, using the short word for both objects, overkill,
using the long word for both objects, and anti-ZLA, using the
long word for the frequent object and the short for the infre-
quent. As in Kanwal et al. (2017), ZLA was the most common
strategy, followed closely by the overkill strategy.

For purposes of comparability, we fit the same logistic re-
gression model specified in Kanwal et al. (2017) (their Table
2) to our data from round one. The binary outcome variable
was short form usage (rather than long form usage). Fixed
effects were object frequency (frequent or infrequent), trial
number (trials 1− 32 re-scaled to 0− 1 to help with model
convergence), and their interaction. Random effects were by-
participant slopes and intercepts for trial number and object
frequency.

As in Kanwal et al. (2017), we find a significant inter-
action effect between object frequency and trial (reference
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Figure 3: Proportion of trials in which the short name was
used with the frequent object (x-axis) and the infrequent ob-
ject (y-axis). Compare to Figure 3 in Kanwal et al. (2017).

value = infrequent; reference value = trial 1; β = 2.026,SE =
0.828,z = 2.446, p = .014), meaning participants were more
likely to use the short form for the frequent object and were
even more likely to do so as the trial number increased. We
also replicate their non-significant effect of trial number (β =
0.585,SE = 1.368,z = 0.427, p = .669) meaning that partic-
ipants were not more likely to use the short form on the basis
of the trial increase alone (e.g., due to boredom with the task).
The one difference we find is a significant effect of object fre-
quency (β = 5.593,SE = 1.688,z = 3.313, p < .001) where
theirs was marginally non-significant at p = 0.079. This
means our participants also had a preference for using the
short form for the frequent object, irrespective of trial num-
ber. Overall, this was a successful replication, demonstrating
that human participants develop ZLA optimal strategies with
A.I. communication partners, and validates our methodology.

Experiment Extension 1: Language Change

We found that participants were able to re-optimize their
word usage to the new object frequencies in round two. To
understand this re-optimization process, we compare partici-
pants’ average word length in round two to what it would have
been if they had continued to use their same mapping from
round one. For example, take the following mapping used
by a participant on round one: on the 8 trials with object B
they used zop 2 times and zopekil 6 times, and on the 24 trials
with object A they used zop 24 times and zopudon zero times.
The average word length in round one is S̄ = ∑m∈M s̄m p(m)
= 3.75 symbols, where s̄m is the average word length for ob-
ject m (s̄A = 3, s̄B = 6) and p(m) is the probability of each
object (p(A) = 0.75, p(B) = 0.25). To calculate this partici-
pant’s average word length if they had continued to use this
mapping in round two, we substitute the values for p(m) in
round two (p(A) = 0.25, p(B) = 0.75) and obtain 5.25 sym-
bols. If we then find that the participant’s actual round two
average word length is less than 5.25 symbols, this suggests
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Figure 4: Participants re-optimize their word usage when fre-
quencies change in round two. Average word length in round
one (left), round two (middle), and in round two if partici-
pants had not re-optimized their word usage (right).

they re-optimized their original mapping to the new object
frequencies in round two. Figure 4 shows that participants
were generally successful in achieving shorter word lengths
in round two (middle bar) than they would have under the
mapping they used in round one (right bar) and a paired sam-
ples t-test found that this difference is significant (mean of
differences = 0.893, t = 7.0029(74), p < .001). This means
that participants were successful in re-optimizing their lan-
guage use after object frequencies changed.

Experiment Extension 2: Common Ground
To investigate the effect of common ground on individuals’
abilities to re-optimize language use, we constructed a lo-
gistic regression model where the binary outcome variable
was short form usage, the fixed effects were object frequency
(frequent or infrequent), trial number (rescaled 0−1), round
(one or two) and condition (common ground or no common
ground), and random effects were by-participant slopes and
intercepts for trial number and object frequency. What we
are looking for is an effect of common ground in round two
that links long forms to the frequent item. The best-fit model
was the full model, involving a four-way interaction of all
predictors, which explained significantly more variance than
the next-most complex model with no four-way interaction
(χ2(1) = 4.85, p = .028). The coefficients of the best-fit
model can be seen in Table 1. Three effects were significant
and are highlighted in the table.

The highest-order effect provides the most comprehen-
sive interpretation of what is going on in the data: this is
the four-way interaction between frequency, trial, condition,
and round. Its negative coefficient, β = −3.165, means that
participants were more likely to use the long word for the
frequent object in round two if they were in the common
ground condition, and this effect increased as the trials in-
creased. This result supports our hypothesis that participants

Fixed Effects Beta S.E. z p
Intercept -2.308 0.613 -3.764 < .001
Frequency 0.638 0.714 0.894 .371
Trial -0.185 0.832 -0.222 .824
Condition -0.875 0.878 -0.996 .319
Round 0.374 0.469 0.799 .425
Frequency : trial 0.954 0.681 1.402 .161
Frequency : condition 1.539 1.018 1.513 .130
Trial : condition -0.608 1.254 -0.485 .628
Frequency : round 1.095 0.537 2.038 .042
Trial : round -1.249 0.844 -1.479 .139
Condition : round 0.477 0.694 0.687 .492
Frequency : trial : condition 2.561 1.099 2.330 .020
Frequency : trial : round 1.811 0.977 1.854 .064
Frequency : condition : round -1.344 0.784 -1.714 .086
Trial : condition : round 1.323 1.264 1.047 .295
Frequency : trial : condition : round -3.165 1.438 -2.200 .028
By-participant random effects Variance SD
Intercept 8.044 2.836
Object 11.723 3.424
Trial 11.234 3.352

Table 1: Model coefficients for the best-fit mixed-effects lo-
gistic regression (both rounds). Reference values: object fre-
quency = infrequent; trial number = 1; condition = no com-
mon ground; round = 1. SE = Standard error. SD = Standard
deviation. Number of participants = 75. Number of observa-
tions = 4800. Trial number each round (1 to 32) rescaled to
be from 0 to 1.

with common ground are less likely to re-optimize their lan-
guage after a change in object frequencies than participants
without common ground. It also shows that this effect devel-
ops over time, given the interaction with trial number.

The next effect, a three-way interaction with frequency,
trial, and condition, means that when the frequent object was
presented, regardless of round, participants in the common
ground condition were more likely to use the short word as
trials went on. This effect is outside of our hypothesis, as
we expected common ground would only interact with round,
and have no effect on ZLA optimality on its own. However
this effect suggests that something about playing one partner,
as opposed to two partners, causes participants to use lan-
guage more optimally in general.

The last effect, a two-way interaction between frequency
and round, simply means that participants were more likely
to use the short form for the frequent object in round two.
This means that experience with the task (i.e., playing the
communication game a second time) helped participants find
the optimal solution.

Finally, none of the fixed effects are significant on their
own. This makes sense because we expected each of them to
affect short form usage in conjunction with object frequency.

Figure 5 visualizes the main effect by plotting the optimal-
ity of participants’ word usage per condition, per round. We
constructed an optimality score that ranges from one (per-
fect ZLA behavior) to zero (anti-ZLA behavior) and places
the lazy and overkill strategies at the midpoint, 0.5. This
score is calculated as the mean probability mass of the di-
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Figure 5: ZLA optimality as predicted by the experimental
manipulation of common ground. Each point shows one par-
ticipant’s optimality score and bars show the mean per condi-
tion, per round.

agonal values of p(word|ob ject), the proportion of trials that
participants used the two word types (long and short) with
each object type (frequent or infrequent). Some example
p(word|ob ject) mappings and their associated scores and
strategy names are:

ZLA semi-ZLA lazy overkill

F I
short word 1 0
long word 0 1

F I
.75 .50
.25 .50

F I
1 1
0 0

F I
0 0
1 1

62.5ZLA score = I
0 0
1 1

1 0.5 0.5

F I
0 1
1 0

0

anti-ZLA

In Figure 5, we see that participants in the no common
ground condition produce more optimal systems in round
two, whereas participants in the common ground condition
show no change in optimality scores between rounds. How-
ever, we expected to see no difference in optimality scores
between conditions in round one and were surprised to find
that the scores in the common ground condition are higher.

Exit Question
In this experiment, we manipulated participants’ ability to
form common ground in a rather subtle way: by having them
play the same partner vs a different partner in round two,
where partner identity was indicated simply by a change in
fill color to the image shown in Figure 2. Furthermore, the
manipulation was fairly novel because it relies on human abil-
ity to form common ground with an A.I. partner. Therefore,
we included an exit question to better understand how par-
ticipants interpreted this manipulation. This question showed
participants the image of the robot they played in round two

*

Figure 6: ZLA optimality as predicted by participants’ an-
swers to the exit question. Yes = memory = common ground.
No = no memory = no common ground.

and asked “Did you think this robot knew or remembered
anything you did during Game 1?”. We expected that partici-
pants in the common ground condition would answer Yes and
participants in the no common ground condition would an-
swer No, however the results showed considerable variation.
In line with our prediction, more Yes responses were obtained
in common ground than no common ground, but participants
were more likely to answer No across the board:

condition Yes No
common ground 16 20

no common ground 12 26

The intention of our common ground manipulation was to
vary whether or not participants believed that their partner
remembered their interactions from round one or not. The re-
sults of this exit question suggest that 1) our manipulation did
not have a strong uniform effect across participants or 2) that
this single question at the end of the experiment captured lit-
tle information about participants’ behavior during the exper-
iment. If point 1 above is true, participants’ response to this
question could serve as an alternative window into their sub-
jective experience of common ground in this task. In response
to reviewers’ suggestions, we re-analyzed our data using par-
ticipants’ response to the exit question in the place of the
common ground condition. We assume that participants who
answered Yes were the ones who established common ground
with their robot partner and participants who answered No
did not. All other variables where kept the same, including
the same reference values, and the reference value for the exit
question was No.

The best-fit model mirrored that of the previous analysis,
but without a significant effect of trial. The main effect was



a three-way interaction between frequency, round, and exit
question (β = −3.271,SE = 0.436,z = −7.503, p < .001).
From this result, we come to the same interpretation as our
previous analysis: participants who responded Yes (i.e., be-
lieved that the robot remembered round one) were less likely
to use the short form for the frequent object in round two.
However, this effect did not increase as trial increased. Fig-
ure 6 plots ZLA optimality re-grouped by exit question. The
main effect patterns with Figure 5: participants without com-
mon ground produced significantly more optimal systems in
round two than in round one. Overall, this result patterns
more closely with our original expectations, where the dif-
ference between conditions only occurs in round two. In
summary, participants’ subjective common ground provides
a clearer picture of the main result: when language changes,
common ground hampers language re-optimization and a lack
of common ground facilitates it.

General Discussion

In this study, we found that language users are able to re-
optimize their language use after the frequencies of the ob-
jects they talk about changes. This work adds a dynamic
component to the existing literature on Zipf’s Law of Ab-
brevation (ZLA) and the competing pressures of accuracy
and efficiency on linguistic structures (Kanwal et al., 2017;
Chaabouni et al., 2019; Kirby et al., 2015; Piantadosi et al.,
2012; Tamariz & Kirby, 2016; Urbina & Vera, 2019) and
helps explain why ZLA manages to remain stable over time
(Pechenick et al., 2017), despite fluctuations in topic frequen-
cies and need probabilities over time. A real-world example
of re-optimization to object frequency reversals occurs when
the prototype in a set changes for socio-cultural reasons. For
example phone has several long forms: telephone, cellphone,
payphone, etc. As the home telephone gained popularity it
took on its clipped form phone, but as cellular phones became
the new assumed referent of phone, home phones began to re-
quire marked forms again for disambiguation.

Our second finding is that common ground affects the re-
optimization process, causing partners who have a shared his-
tory of communicative success to use less optimal systems
after topic frequencies change. This result provides one pos-
sible explanation for observed sub-optimalities in language,
supporting the idea that communities’ communication strate-
gies may become “stuck” in local optima. This is in line with
other work on language evolution showing that population
turnover (i.e., playing new partners gradually over the course
of a game) eliminates unnecessary complexities in communi-
cation systems (Castillo et al., 2015; Fay, Garrod, Roberts, &
Swoboda, 2010; Tamariz, Cornish, Smith, Roberts, & Kirby,
2012; Granito, Tehrani, Kendal, & Scott-Phillips, 2019) and
that smaller communities, with presumably higher pairwise
common ground, are able to maintain more complex lan-
guages over time (Raviv, Meyer, & Lev-Ari, 2019; Lupyan &
Dale, 2010). In other words, as more people become involved
with communication, the more likely it is that an optimal so-

lution will be found at a population level.
Although our results were obtained in a human-robot com-

munication framing, we believe that they will extend to
human-human interaction. First, we replicated the results of
Kanwal et al. (2017), showing that human participants are
able to develop ZLA optimal word usage with both a human
partner and an A.I. partner. Both of these studies, however,
are technically human-computer interaction paradigms, but
we suspect the results will replicate in a face-to-face com-
munication game between humans. The one aspect that may
vary across such framings is the relative frequency of the vari-
ous strategies. For example, our study obtained more overkill
strategies than Kanwal et al. (2017) did, perhaps because hu-
man players perceived the robot to have lower linguistic com-
petence than a human and therefore erred on the side of liter-
ally spelling everything out for them.

As for common ground, it is possible that our partici-
pants formed a different sort of common ground with their
robot partner than they would have formed with a human
partner. However, several studies show that humans employ
human-human communication norms when communicating
with robots. For example, Krämer, von der Pütten, and Eimler
(2012) show that humans readily engage in human-normative
communicative behavior with robots as soon as the context is
sufficiently social and Powers et al. (2005) demonstrate that
simple cues, such as the pitch of a robot’s voice, cause par-
ticipants to assume gender-normative common ground with
robot communication partners. In this latter study, partic-
ipants spent more time talking to male robots about topics
that males are normatively assumed to have little knowledge
about, demonstrating that assumed common ground directly
affects the communicative effort humans are willing to put in
with a robot communication partner.

In future research, we would like to extend this work to
populations to understand how sub-optimalities are formed
and maintained in speech communities. Real-world popula-
tions are structured into sub-populations that exhibit differ-
ent topic frequencies (Sylwester & Purver, 2015) as well as
asymmetries in common ground, where disempowered mi-
norities display more knowledge about those in power than
vice-a-versa (Graeber, 2012). As diverse populations negoti-
ate shared linguistic conventions, which topic frequencies are
they optimized to fit and why? Are certain sub-populations
left with an information processing burden, or is a fair trade-
off achieved?
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Krämer, N. C., von der Pütten, A., & Eimler, S. (2012).
Human-agent and human-robot interaction theory. In
Human-computer interaction: The agency perspective. (pp.

215–240). Springer.
Lupyan, G., & Dale, R. (2010). Language structure is partly

determined by social structure. PloS One, 5(1), e8559.
Mahowald, K., Dautriche, I., Gibson, E., & Piantadosi, S. T.

(2018). Word forms are structured for efficient use. Cogni-
tive Science, 42(8), 3116–3134.

Pechenick, E. A., Danforth, C. M., & Dodds, P. S. (2017). Is
language evolution grinding to a halt? Journal of Compu-
tational Science, 21, 24–37.

Piantadosi, S. T. (2014). Zipf’s word frequency law in natural
language: A critical review and future directions. Psycho-
nomic Bulletin & Review, 21(5), 1112–1130.

Piantadosi, S. T., Tily, H., & Gibson, E. (2011). Word lengths
are optimized for efficient communication. Proceedings of
the National Academy of Sciences, 108(9), 3526–3529.

Piantadosi, S. T., Tily, H., & Gibson, E. (2012). The com-
municative function of ambiguity in language. Cognition,
122(3), 280–291.

Powers, A., Kramer, A., Lim, S., Kuo, J., Lee, S., & Kiesler,
S. (2005). Common ground in dialogue with a gendered
humanoid robot. Proceedings of RO-MAN 2005.

Raviv, L., Meyer, A., & Lev-Ari, S. (2019). Larger communi-
ties create more systematic languages. Proceedings of the
Royal Society B, 286(1907), 20191262.

Sankoff, G. (2018). Language change across the lifespan.
Annual Review of Linguistics, 4, 297–316.

Smith. (2014). Models of language evolution and change.
Cognitive Science, 5(3), 281–293.

Sylwester, K., & Purver, M. (2015). Twitter language use
reflects psychological differences between democrats and
republicans. PloS One, 10(9), e0137422.

Tamariz, M., Cornish, H., Smith, K., Roberts, S., & Kirby, S.
(2012). The effects of generation turnover and interlocu-
tor negotiation on linguistic structure. In The evolution of
language. (pp. 555–556).

Tamariz, M., & Kirby, S. (2016). The cultural evolution of
language. Current Opinion in Psychology, 8, 37–43.

Urbina, F., & Vera, J. (2019). A decentralized route to the
origins of scaling in human language. Journal of Statistical
Mechanics: Theory and Experiment, 2019(9), 093401.

Xu, Y., Liu, E., & Regier, T. (2020). Numeral systems across
languages support efficient communication: From approx-
imate numerosity to recursion. Open Mind, 4, 57–70.

Zaslavsky, N., Kemp, C., Regier, T., & Tishby, N. (2018).
Efficient compression in color naming and its evolution.
Proceedings of the National Academy of Sciences, 115(31),
7937–7942.

Zipf, G. K. (1935). The psycho-biology of language.
Houghton Mifflin.

Zipf, G. K. (1949). Human behavior and the principle of
least effort. Addison-Wesley.


