Summer School Overview

- Day 0: R bootcamp
- Day 1: Workflow, Google App Engine
- Day 2: Online Experiments
- Day 3: Data wrangling, visualization
- Day 4: Statistics, Probabilistic models
- Day 5: Experience sampling

Packages and programs

Please install the Ime4, brms, tidybayes and BayesFactor packages in R, along with JAGS (see link on resources page of website)

Announcements

Day 4 materials

• Update your copy of the chdss2019_content repository

(type git pull at the terminal when working directory is Desktop/chdss2019_content)

Open chdss2019_content.Rproj

Goals

- Introduce some statistical concepts, including Bayesian approaches and mixed effects models
- 2. Work towards a statistical analysis of the sampling frames data

Classical tests

- The t.test() function handles one-sample, independent samples and paired samples t-tests
- The chisq.test() function handles chi-square tests of independence and Pearson goodness of fit tests
- The prop.test() function tests for the equality of two proportions.
- The binom.test() function allows you to do a binomial test of choice proportion against a known rate
- The wilcox.test() function handles one- and two-sample nonparametric tests of equality of means
- The cor.test() function tests the significance of a correlation

tinyframes data

```
tinyframes <- frames %>%
group_by(id, age, condition) %>%
summarise(
   response = mean(response)
   ) %>%
ungroup()
```

id 🌻	condition 🗘	response 🗦
1	category	5.333333
2	category	7.047619
3	property	4.857143
4	property	3.857143
5	property	9.000000
6	category	7.904762

tinyframes data

```
tinyframes <- frames %>%
group_by(id, age, condition) %>%
summarise(
   response = mean(response)
   ) %>%
ungroup()
```



```
t-test
```

```
t.test(
                                             7.5 -
   formula = response ~ condition,
                                            esbouse
   data = tinyframes,
   var.equal = TRUE
                                             2.5 -
                                                   category
                                                               property
                                                         condition
## Two Sample t-test
##
## data: response by condition
## t = 5.1625, df = 223, p-value = 5.388e-07
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 0.6259535 1.3988834
## sample estimates:
## mean in group category mean in group property
                  5.397661
##
                                            4.385242
```


From a t-test to linear models

mod1: response_i = $\beta_0 + \epsilon_i$

mod2: response_i = $\beta_0 + \beta_1 * \text{condition}_i + \epsilon_i$

mod1 <- lm(formula = response ~ 1, data = tinyframes)</pre>

mod2 <- lm(formula = response ~ condition, data = tinyframes)</pre>

From a t-test to linear models

mod1: response_i = $\beta_0 + \epsilon_i$

mod2: response_i = $\beta_0 + \beta_1 * \text{condition}_i + \epsilon_i$

mod1 <- lm(formula = response ~ 1, data = tinyframes)
mod2 <- lm(formula = response ~ condition, data = tinyframes)</pre>

```
##
## Call:
## Call:
## lm(formula = response ~ condition, data = tinyframes)
##
## Coefficients:
## (Intercept) conditionproperty
## 5.398 -1.012
```


ANOVA for model comparison

mod1: response_i = $\beta_0 + \epsilon_i$

mod2: response_i = $\beta_0 + \beta_1 * \text{condition}_i + \epsilon_i$

anova(mod1, mod2)

```
## Analysis of Variance Table
##
## Model 1: response ~ 1
## Model 2: response ~ condition
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 224 539.98
## 2 223 482.33 1 57.645 26.652 5.388e-07 ***
## ----
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```


Least squares regression

Coughing patient

- d: Jen is coughing
- *h*₁: Jen has a cold
 *h*₂: Jen has emphysema
 *h*₃: Jen has a stomach upset

Coughing patient

- d: Jen is coughing
- *h*₁: Jen has a cold
 *h*₂: Jen has emphysema
 *h*₃: Jen has a stomach upset

Specifying prior and likelihood

h <- c('cold', 'emphysema', 'stomach upset')
p_h <- c(0.46, 0.04, 0.4)
p_d_given_h <- c(0.4, 0.4, 0.05)</pre>

prior

likelihood

posterior

Exercise: Coughing patient

h <- c('cold', 'emphysema', 'stomach upset')
p_h <- c(0.46, 0.04, 0.4)
p_d_given_h <- c(0.4, 0.4, 0.05)</pre>

Bayesian inference

Two distinct applications:

1. Bayesian Data analysis

2. Bayesian cognitive models

Bayesian regression

- M₁: response_i = $\beta_0 + \epsilon_i$ M₂: response_i = $\beta_0 + \beta_1 * \text{condition}_i + \epsilon_i$
- Both models assume $\epsilon_i \sim N(0, \sigma^2)$

Fitting M₂: compute $P(\beta_0, \beta_1, \sigma | D)$ where *D* is the observed data

Bayesian regression

prior

likelihood

posterior

Assume $P(\beta_0, \beta_1, \sigma) = P(\beta_0)P(\beta_1)P(\sigma)$

Bayesian inference $P(\beta_0, \beta_1, \sigma | D) \propto \frac{P(D | \beta_0, \beta_1, \sigma)}{P(\beta_0, \beta_1, \sigma)} P(\beta_0, \beta_1, \sigma)$

ikelihood

id [‡]	condition 🗘	response 🌻
1	category	5.333333
2	category	7.047619
3	property	4.857143
4	property	3.857143
5	property	9.000000
6	category	7.904762

Bayesian inference $P(\beta_0, \beta_1, \sigma | D) \propto \frac{P(D | \beta_0, \beta_1, \sigma)}{P(\beta_0, \beta_1, \sigma)} P(\beta_0, \beta_1, \sigma)$

 $\beta_0 \beta_1$

likelihood

id 🗘	condition 🍦	response 🌻	modelfit 🗧
1	category	5.333333	5.397661
2	category	7.047619	5.397661
3	property	4.857143	4.385242
4	property	3.857143	4.385242
5	property	9.000000	4.385242
6	category	7.904762	5.397661

Bayesian inference $P(\beta_0, \beta_1, \sigma | D) \propto \frac{P(D | \beta_0, \beta_1, \sigma)}{P(\beta_0, \beta_1, \sigma)} P(\beta_0, \beta_1, \sigma)$

 $\beta_0 \beta_1$

 $\boldsymbol{\sigma}$

 $P(\epsilon_i | \sigma)$

ikelihood

			·	
id 🗘	condition 🍦	response 🍦	modelfit 🗦	ϵ_i $\hat{\epsilon}$
1	category	5.333333	5.397661	-0.064327485
2	category	7.047619	5.397661	1.649958229
3	property	4.857143	4.385242	0.471900472
4	property	3.857143	4.385242	-0.528099528
5	property	9.000000	4.385242	4.614757615
6	category	7.904762	5.397661	2.507101086

Markov-Chain Monte Carlo (MCMC) methods

$P(\beta_0, \beta_1, \sigma | D) \propto P(D | \beta_0, \beta_1, \sigma) P(\beta_0, \beta_1, \sigma)$

Regression

• Least-squares:

mod2 < - lm(

formula = response ~ condition,
 data = tinyframes)
)

• Bayesian:

mod2_bayes <- brm(
 formula = response ~ condition,
 data = tinyframes,</pre>

- M_2 : response_i = $\beta_0 + \beta_1 * \text{condition}_i + \epsilon_i$
- $BF_{21} = \frac{P(M_2|D)}{P(M_1|D)} = \frac{P(D|M_2)P(M_2)}{P(D|M_1)P(M_1)}$

M₂: response_i = $\beta_0 + \beta_1 * \text{condition}_i + \epsilon_i$

$$BF_{21} = \frac{P(M_2|D)}{P(M_1|D)} = \frac{P(D|M_2)}{P(D|M_1)}$$

 $P(D|M_2) = \int P(D|\beta_0, \beta_1, \sigma, M_2) P(\beta_0, \beta_1, \sigma|M_2) d\beta_0 d\beta_1 d\sigma$

Bayes factors for model comparison

Value

 $BF_{21} < 1$

- $1 < BF_{21} < 3$
- $3 < BF_{21} < 10$
- $10 < BF_{21} < 100$
- $100 < BF_{21}$

Interpretation Negative: supports M_1 rather than M_2 Barely worth mentioning Substantial Strong Decisive

Bayes factors for model comparison

- mod1: response_i = $\beta_0 + \epsilon_i$
- mod2: response_i = $\beta_0 + \beta_1 * \text{condition}_i + \epsilon_i$

```
mod2_bayes <- brm(
  formula = response ~ condition,
  data = tinyframes,
  save_all_pars = TRUE
</pre>
```

BF <- bayes_factor(mod2_bayes, mod1_bayes)</pre>

Multiple predictors

Multiple predictors

mod3:

```
## Call:
## lm(formula = response ~ condition + age, data = tinyframes)
##
## Coefficients:
## (Intercept) conditionproperty age
## 5.102572 -1.018548 0.008536
```

Model selection:

anova(mod1, mod2, mod3)

Model comparison with AIC and BIC

For model with parameters heta

- Find $\hat{\theta}$ that maximizes $P(D|\theta)$
 - AIC: $2k 2\ln(P(D|\hat{\theta}))$
 - BIC: $\ln(n)k 2\ln(P(D|\hat{\theta}))$

where k is number of parameters, n is number of data points Model comparison with AIC and BIC Find $\hat{\theta}$ that maximizes $P(D|\theta)$

- AIC: $2k 2\ln(P(D|\hat{\theta}))$
- BIC: $\ln(n)k 2\ln(P(D|\hat{\theta}))$

where k is number of parameters, n is number of data points

Important points:

- lower is better
- both penalize model complexity (BIC has heavier penalty)

Model comparison with AIC and BIC

AIC(mod1, mod2, mod3)

BIC(mod1, mod2, mod3)

##		df	AIC
##	mod1	2	839.4940
##	mod2	3	816.0928
##	mod3	4	817.0575

##		df	BIC
##	mod1	2	846.3262
##	mod2	3	826.3411
##	mod3	4	830.7219

Mixed effects models

- ANOVA models used to be the go-to approach in psychology, but the field is shifting to mixed-effects models.
- Advantages of mixed-effects models:
 - extend naturally to complex situations (e.g. cases with nested structure, factors that overlap in complex ways)
 - deal well with missing data

Sleep study example

Reaction 🍦	Days 🍦	Subject 🍦	Group
249.5600	0	1	group_1
258.7047	1	1	group_1
250.8006	2	1	group_1
321.4398	3	1	group_1

Fixed intercept, slope

lm(Reaction ~ Days, data = sleep_groups)

Random intercept per group

lmer(Reaction ~ Days + (1 | Group), data = sleep_groups)

Random slope per group

(Reaction ~ Days + (**0** + Days | Group)

Random slope + intercept per group

(Reaction ~ Days + (1 + Days | Group)

Mixed effects models

modestframes data

	id 🍦	age 🍦	condition	\$	n_obs 🗦	response	÷
	1	36	category		2	5.857143	
	1	36	category		6	5.285714	
	1	36	category		12	4.857143	
	2	46	category		2	5.285714	
		category			prope	erty	
8 8 esbouse 4 - 2 -							
	2.5 5.0	0 7.5	10.0 12.5	2.5	5.0	7.5 10.0	12.
			n ol	os			

Model comparison

modest1: response ~ 1 + (1 | id)
modest2: response ~ condition + n_obs + (1 | id)
modest3: response ~ condition + n obs + (1 + n obs | id)

anova(modest1, modest2, modest3)

 Df
 AIC
 BIC
 logLik deviance
 Chisq Chi Df Pr(>Chisq)

 modest1
 3
 2354.9
 2368.5
 -1174.5
 2348.9

 modest2
 5
 2333.5
 2356.1
 -1161.8
 2323.5
 25.403
 2
 3.046e-06

 modest3
 7
 2270.4
 2302.0
 -1128.2
 2256.4
 67.164
 2
 2.603e-15

Model checking: individuals

modestframes\$modelfit <- predict(modest3)
modestframes\$residuals <- residuals(modest3)</pre>

Model checking: predictions

Model checking: residuals

modestframes\$modelfit <- predict(modest3)
modestframes\$residuals <- residuals(modest3)</pre>

frames data

id 🔷	condition 🗘	sample_size 🗘	n_obs 🗘	test_item 🗘	response
1	category	small	2	1	8
1	category	small	2	2	7
1	category	small	2	3	6
1	category	small	2	4	6
1	category	small	2	5	5
_			_	_	_

Model comparison

linframes1:

response ~ condition + n_obs + (1 + n_obs | id)

linframes2:

response ~ condition + n_obs + test_item + (1 + n_obs + test_item | id)

anova(linframes1, linframes2)

 Df
 AIC
 BIC
 logLik deviance Chisq Chi Df Pr(>Chisq)

 linframes1
 7
 23128
 23173
 -11556.8
 23114

 linframes2
 11
 19734
 19805
 -9855.8
 19712
 3402
 4
 < 2.2e-16</td>

Model checking: individuals

Generalized linear mixed models

Map response to generalization (between 0 and 1)

```
logitmod <- glmer(
  formula = generalisation ~ condition + test_item + n_obs + (1 + test_item + n_obs|id),
  family = gaussian(link = "logit"),
  data = glmerframes)</pre>
```


What to write up?

 The actual paper reported Bayes factors computed using JASP

• See analysis_samplesize.Rmd (in samplingframes/analysis) for more