Why build models?

Why build models?

To help explain some empirical result

• To help formulate a theory

Modeling approaches

- Formal logic
- Production systems (e.g SOAR, ACT-R)
- Neural networks
- Dynamic systems
- Probabilistic models

Why build probabilistic models?

- For us: probabilities are degrees of belief
- Probability theory captures the right way to update degrees of belief

"The theory of probabilities is at bottom only common sense reduced to calculus; it makes us appreciate with exactitude that which exact minds feel by a sort of instinct without being able oft times to give a reason for it" (Laplace)

Applications of probability theory

Probabilistic machine learning and artificial intelligence

Zoubin Ghahramani¹

Module 1 INDUCTIVE INFERENCE

John has a cold

John has emphysema

Curve fitting

John has a cold

Coughing friend

Curve fitting

John has emphysema

Coughing friend

Curve fitting

Curve fitting

Building a Bayesian model

- What are the observed data?
- What are the hypotheses?
- What is the prior?
- What is the likelihood?

Take home messages

• Bayesian models are useful for thinking about inductive problems.

 There are many inductive problems from a wide range of domains including vision, language, motor control, etc.

BAYESIAN NETWORKS (DIRECTED GRAPHICAL MODELS)

Module 3

Representing hypothesis spaces and priors

• Coughing patient:

- we just enumerated the hypothesis space

- Bayesian regression: – we assumed $P(\beta_0, \beta_1, \sigma) = P(\beta_0)P(\beta_1)P(\sigma)$
- What if the hypothesis space is huge how do we come up with all the numbers in the prior?

Food web problem

Herring carry a certain disease.

How likely is it that make have the same disease?

Food web problem

Model predictions:

(Shafto et al, 2008)

Building a Bayesian model

- What are the observed data?
- What are the hypotheses?
- What is the prior?
- What is the likelihood?

Hypothesis space and prior

	kelp	herring	dolphin	tuna	sandshark	mako	human	prior
	<int></int>	<dbl></dbl>						
1	1	1	1	1	1	1	1	0.478
2	2	1	1	1	1	1	1	0.026 <u>6</u>
3	1	2	1	1	1	1	1	0.006 <u>64</u>
4	2	2	1	1	1	1	1	0.004 <u>06</u>
5	1	1	2	1	1	1	1	0.026 <u>6</u>
6	2	1	2	1	1	1	1	0.001 <u>48</u>
7	1	2	2	1	1	1	1	0.004 <u>06</u>
8	2	2	2	1	1	1	1	0.002 <u>48</u>
9	1	1	1	2	1	1	1	0.026 <u>6</u>
10	2	1	1	2	1	1	1	0.00148

$$P(K = 1) = 0.1$$

Κ	P(H = 1 K)
0	0.1
1	0.55

P(K = 1) = 0.1

$$P(K = 1) = 0.1$$

K	P(H = 1 K)
0	0.1
1	0.55

D	Т	P(M = 1 D, T)
0	0	0.1
0	1	0.55
1	0	0.55
1	1	0.775

P(K, H, D, T, M) = P(K) * P(H|K) * P(D|H) * P(T|H) * P(T|H) * P(M|D,T)

General formulation

$P(v_1,\ldots,v_n) = \prod_i P(v_i|\mathrm{pa}(V_i))$

$$P(K = 1) = 0.1$$

K	P(H = 1 K)
0	0.1
1	0.55

D	Т	P(M = 1 D, T)
0	0	0.1
0	1	0.55
1	0	0.55
1	1	0.775

Exercise: Food web (enumeration)

	kelp	herring	dolphin	tuna	sandshark	mako	human	prior
	<int></int>	<dbl></dbl>						
1	1	1	1	1	1	1	1	0.478
2	2	1	1	1	1	1	1	0.026 <u>6</u>
3	1	2	1	1	1	1	1	0.006 <u>64</u>
4	2	2	1	1	1	1	1	0.004 <u>06</u>
5	1	1	2	1	1	1	1	0.026 <u>6</u>
6	2	1	2	1	1	1	1	0.001 <u>48</u>
7	1	2	2	1	1	1	1	0.004 <u>06</u>
8	2	2	2	1	1	1	1	0.002 <u>48</u>
9	1	1	1	2	1	1	1	0.026 <u>6</u>
0	2	1	1	2	1	1	1	0.001 <u>48</u>

Take home messages

 Bayes nets give us a good way to specify priors

INFERENCE BY SAMPLING FROM THE PRIOR

Module 4

Sampling from the prior

$$P(K = 1) = 0.1$$

K	P(H = 1 K)
0	0.1
1	0.55

D	Т	P(M = 1 D, T)
0	0	0.1
0	1	0.55
1	0	0.55
1	1	0.775

Sample based predictions

obs <- list(kelp = 1, mako = 2)</pre>

- 1. Collect set of samples from prior
- 2. Remove all those that are inconsistent with the observations
- 3. Make predictions based on samples that remain

Sample based predictions

$$P(\text{humans}|obs) = \sum_{h} P(\text{humans}|h)P(h|obs)$$

$$\propto \sum_{h} P(\text{humans}|h)P(obs|h)P(h)$$

$$\approx \frac{1}{M} \sum_{i=1}^{M} P(\text{humans}|h^{i})P(obs|h^{i})$$
Exercise: Food web (sampling from the prior)

Take home messages

Bayes nets give us a good way to specify priors

• Sampling is often a good way to implement probabilistic inference

Module 5

JAGS

Sample based predictions

• If we could sample from the posterior P(h|obs)

$$P(\text{humans}|obs) = \sum_{h} P(\text{humans}|h)P(h|obs)$$
$$\approx \frac{1}{M} \sum_{i=1}^{M} P(\text{humans}|h^{i})$$

JAGS and STAN

Widely used for data analysis and cognitive modeling

Second Edition

Doing Bayesian Data Analysis

A Tutorial with R, JAGS, and Stan

JAGS : model specification

```
model
{
    # dcat specifies a discrete categorical distribution
    kelp ~ dcat(p.kelp[1:2])
    herring ~ dcat(p.herring[kelp,1:2])
    dolphin ~ dcat(p.dolphin[herring,1:2])
    tuna ~ dcat(p.tuna[herring,1:2])
    sandshark ~ dcat(p.sandshark[herring,1:2])
    mako ~ dcat(p.mako[dolphin,tuna,1:2])
    human ~ dcat(p.human[mako,1:2])
}
```

JAGS : observations and CPDs

specify observations here
obs <- list(kelp = 1, mako = 2)</pre>

```
foodwebdata<- c(obs, list(
    p.kelp = zerop,
    p.herring = onep,
    p.dolphin = onep,
    p.tuna = onep,
    p.sandshark = onep,
    p.mako = twop,
    p.human = onep))</pre>
```

Running JAGS

Exercise: Food web (sampling from the posterior using JAGS)

Take home messages

Bayes nets give us a good way to specify priors

• Sampling is often a good way to implement probabilistic inference

 Tools like JAGS make sampling-based inference relatively simple in many contexts

Bayes nets

Graphical model for inferring membership of two latent groups, consisting of malingerers and *bona fide* participants.

Bayes nets

- When you're starting *any* modeling project
 - Try to write down the relevant variables
 - Draw a graph to show how the variables are related to each other

Bayes Nets and causal reasoning

- Bayes nets support reasoning about:
 - Interventions
 - Counterfactuals

Take home messages

- Bayes nets are:
 - a useful engineering tool
 - a tool for thinking

SAMPLING FRAMES AND SPHERES OF SODOR

Module 6

Sampling frames

The robot uses a grapple that can pick up small spheres and test them for the presence of plaxium

The robot uses a high-resolution scanner to detect plaxium, which triggers the camera to take an image whenever the plaxium coating is found

Category sampling

Human data

Building a Bayesian model

- What are the observed data?
- What are the hypotheses?
- What is the prior?
- What is the likelihood?

Observations

Hypotheses

category_means

Prior on category means

Category sampling

Category sampling

Gaussian distributions

$$m = \begin{bmatrix} 0, 0 \end{bmatrix}$$
$$\Sigma = \begin{bmatrix} 1 & 0.5 \\ 0.5 & 1 \end{bmatrix}$$

Category sampling

Category sampling

Inference with JAGS

Category sampling

category.bug

model {

```
# mean and covariance matrix definin
for(i in 1:ncat) {
    mean_gp[i] <- m
    cov_gp[i,i] <- (sigma^2) + (tau^2)
    for(j in (i+1):ncat) {
        cov_gp[i,j] <- (tau^2) * exp(-rh
        cov_gp[j,i] <- cov_gp[i,j]
    }
}
# sample a function from the Gaussia
cov_gp_inv <- inverse(cov_gp)</pre>
```

```
f ~ dmnorm(mean_gp, cov_gp_inv)
```

```
# pass f through logistic function t
for(i in 1:ncat) {
   category_means[i] <- 1/(1+exp(-f[i
}</pre>
```

Exercise: Sampling frames

Take home messages

 Bayes nets let you build relatively complex models out of simple pieces

 JAGS makes the implementation process relatively painless

TAKING STOCK

Today's models

How are the models we've discussed useful?

• And what are their limitations?
Bayesian models in general

 Can Bayesian models be useful for thinking about problems you're interested in?

• Where might they be not so useful?