
Why build models?



Why build models?
• To help explain some empirical result

• To help formulate a theory
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Modeling approaches

• Formal logic
• Production systems (e.g SOAR, ACT-R)
• Neural networks
• Dynamic systems
• Probabilistic models



Why build probabilistic models?

• For us: probabilities are degrees of belief

• Probability theory captures the right way to 
update degrees of belief

“The theory of probabilities is at bottom only common 
sense reduced to calculus; it makes us appreciate with 
exactitude that which exact minds feel by a sort of 
instinct without being able oft times to give a reason for 
it”  (Laplace)



Applications of probability theory
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INDUCTIVE INFERENCE
Module 1



Inductive inference
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Inductive inference

Curve fittingCoughing friend
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• D: 

• h1:                    h2:                     h3:

Curve fitting

Posterior
probability

Evidence Prior
knowledge

P(h|d) α P(d|h) P(h)
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Building a Bayesian model

• What are the observed data?
• What are the hypotheses?
• What is the prior?
• What is the likelihood?

Posterior Likelihood Prior

P(h|d) α P(d|h) P(h)



Take home messages

• Bayesian models are useful for thinking 
about inductive problems.

• There are many inductive problems from a 
wide range of domains including vision, 
language, motor control, etc. 



BAYESIAN NETWORKS 
(DIRECTED GRAPHICAL 
MODELS)

Module 3



Representing hypothesis 
spaces and priors

• Coughing patient:
– we just enumerated the hypothesis space

• Bayesian regression:
– we assumed

• What if the hypothesis space is huge –
how do we come up with all the numbers 
in the prior?



Food web problem

Herring carry a certain disease.

How likely is it that mako have 
the same disease?



Food web problem

(Shafto et al, 2008)



Building a Bayesian model

• What are the observed data?
• What are the hypotheses?
• What is the prior?
• What is the likelihood?

Posterior Likelihood Prior

P(h|d) α P(d|h) P(h)



Hypothesis space and prior



Specifying a prior
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Specifying a prior

Kelp

Herring

TunaDolphin

Mako

P(K, H, D, T, M) =
P(K) *
P(H|K) *
P(D|H) *
P(T|H) *
P(M|D,T)



General formulation



Specifying a prior
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Specifying a prior

Kelp

Herring

TunaDolphin

Mako

P(K = 1) = b

K P(H = 1 |K)
0 b
1 1 – (1-t)(1-b)

D T P(M = 1 |D, T)
0 0 b
0 1 1 - (1-t)(1-b)
1 0 1 - (1-t)(1-b)
1 1 1 – (1-t)(1-t)(1-b)

b: base rate
t: transmission rate



Exercise: Food web 
(enumeration)



Take home messages

• Bayes nets give us a good way to specify 
priors 



INFERENCE BY SAMPLING 
FROM THE PRIOR

Module 4



Sampling from the prior
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Sample based predictions

1. Collect set of samples from 
prior

2. Remove all those that are 
inconsistent with the 
observations

3. Make predictions based on 
samples that remain
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Mako



Sample based predictions



Exercise: Food web (sampling 
from the prior)



Take home messages

• Bayes nets give us a good way to specify 
priors 

• Sampling is often a good way to 
implement probabilistic inference



JAGS 
Module 5



Sample based predictions

• If we could sample from the posterior 



JAGS and STAN

• Widely used for data analysis and 
cognitive modeling 



JAGS : model specification



JAGS : observations and CPDs



Running JAGS



Exercise: Food web (sampling 
from the posterior using JAGS)



Take home messages

• Bayes nets give us a good way to specify 
priors 

• Sampling is often a good way to 
implement probabilistic inference

• Tools like JAGS make sampling-based 
inference relatively simple in many 
contexts



Medical diagnosis



Bayes nets



Bayes nets

• When you’re starting any modeling project
– Try to write down the relevant variables
– Draw a graph to show how the variables are 

related to each other



Bayes Nets and causal 
reasoning

• Bayes nets support reasoning about:
– Interventions
– Counterfactuals



Take home messages

• Bayes nets are:
– a useful engineering tool
– a tool for thinking





SAMPLING FRAMES AND 
SPHERES OF SODOR 

Module 6



Sampling frames

Category 
sampling

Property 
sampling



Human data



Building a Bayesian model

• What are the observed data?
• What are the hypotheses?
• What is the prior?
• What is the likelihood?

Posterior Likelihood Prior

P(h|d) α P(d|h) P(h)



Observations



Hypotheses
category_means

Proportion 
with 

plaxium

category



Prior on category means



Category sampling

category_means

categoryplaxium



Category sampling

mean_gp
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Gaussian distributions



Category sampling

m cov_gp

mean_gp

category_means

categoryplaxium



Category sampling
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Property sampling
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Inference with JAGS

m cov_gp

sigma tau rho

mean_gp

category_means

categoryplaxium

category.bugCategory sampling



Exercise: Sampling frames 



Take home messages

• Bayes nets let you build relatively complex 
models out of simple pieces

• JAGS makes the implementation process 
relatively painless



TAKING STOCK



Today’s models

• How are the models we’ve discussed 
useful?

• And what are their limitations?



Bayesian models in general

• Can Bayesian models be useful for 
thinking about problems you’re interested 
in?

• Where might they be not so useful?


