
Day 2: Online experiments
Amy Perfors

Tentative plan

1. Experiment logic, motivation, and design
2. R basics for coding: branching, functions, lists
3. Creating a template experiment with jaysire and putting it

online
4. Making a more complex experiment

DAY 2: EXPERIMENTS

Tentative plan

1. Experiment logic, motivation, and design
2. R basics for coding: branching, functions, lists
3. Creating a template experiment with jaysire and putting it

online
4. Making a more complex experiment

DAY 2: EXPERIMENTS

OUR TASK: DESIGN AN EXPERIMENT TO
TEST THIS HYPOTHESIS

Prediction of category sampling
with increasing N

Prediction of property sampling
with increasing N

• Conditions / manipulation?

• Task?

• Instructions?

What is the probability
of C-P+?

Cover story: You are in charge of a robot probe exploring the planet
Sodor, which is covered by spherical rocks. Your job is to determine

which rocks contain a valuable substance called plaxium.

EXPERIMENTAL DESIGN

Category sampling
Only rocks with plaxium

sampled because that the
robot selects those that set

off its plaxium detector.

Sample 2
rocks

(both small)

Only small rocks sampled
because that is the only
size that will fit into the
robot’s collecting claw.

Property sampling

2
Sample 4

more rocks
(all small)

6
Sample 6

more rocks
(all small)

12Test
Are these
plaxium?

Test
Are these
plaxium?

Test
Are these
plaxium?

WALK THROUGH THE EXPERIMENT

1. Instructions are simple, not super wordy, click through
(with pictures!)

- Need engaged participants
- Need them to understand it!!

https://chdss-expt.appspot.com/

WALK THROUGH THE EXPERIMENT

2. There are “understanding check questions” after the
instructions

- Make sure the
manipulation worked

- Implicit test for English
speaking ability

https://chdss-expt.appspot.com/

WALK THROUGH THE EXPERIMENT

3. Reiterate the important instructions in the experiment;
don’t assume people will remember everything

https://chdss-expt.appspot.com/

WALK THROUGH THE EXPERIMENT

4. Test questions are very clear with clearly labeled axes

- Depending on the
experiment you may
designate a few ahead of
time to yourself (in pre-
registration) as filter ones
to catch people who
aren’t paying attention
and discard their data

- These should be non-
obvious but also clearly
justifiable as a filter

https://chdss-expt.appspot.com/

WALK THROUGH THE EXPERIMENT

5. Between participants, everything unimportant is
randomised as much as possible (e.g., order of

test questions, etc)

https://chdss-expt.appspot.com/

FIRST STEP: CODING

Van has given you as much as you need to know about
html, javascript, and putting things on the server

Goal today: Combine this with coding in
R and using the jaysire package to make

an actual experiment like this*

* For pedagogical purposes it probably won’t be this experiment because I want to demo a
variety of things in a tractable way, but the folder for today includes the code for this

experiment and you should have the knowledge to understand everything in it

BEGIN WITH SOME R BASICS
In the bootcamp we covered data and variable

manipulation, simple scripts, etc, but there are a few more
essential programming skills we need to have

1. Loops
2. Branches
3. Functions

LOOPS

THE PURPOSE OF A LOOP

while (CONDITION) {
 STATEMENT1
 STATEMENT2
 ETC
}

Needs to be a logical
(TRUE or FALSE)

Does all of these
things as long as the

condition is TRUE

WHILE LOOPS

[1] 1074

x <- 0
while (x < 1000) {
 x <- x + 179
}
print(x)

WHILE LOOPS

Count down from 500 by 20s, stopping once the number is
negative. Print out the entire sequence (i.e., it should print 500,

480… and stop at 0).

EXERCISE

for (VAR in VECTOR) {
 STATEMENT1
 STATEMENT2
 ETC
} Counts through each

of the things in the
vector

Does all of these
things as long as the

condition is TRUE

FOR LOOPS

for (value in 1:10) {
 answer <- 137*value
 print(answer)
}

137
274
411
548
685
822
959
1096
1233
1370

FOR LOOPS

words <- c(“farewell”,”cruel”,”world”)
for (thisWord in words) {
 nLetters <- nchar(thisWord)
 blockWord <- toupper(thisWord)
 cat(blockWord,”has”,nLetters,”letters\n”)
}

FAREWELL has 8 letters
CRUEL has 5 letters
WORLD has 5 letters

LOOPING OVER VECTORS

1. Use a FOR loop to count down from 500 by 20s, stopping once
the number is negative. Print out the entire sequence (i.e., it should

print 500, 480… and stop at 0). At the end, also print out how
many items total are in the sequence.

2. Create a data frame with two columns. One is the name of all of
the people in your family (or if you prefer your close friends); there
should be at least three. The second is their age. For each person
it should print out their name next to their age: e.g. “Amy is 41.”

EXTRA CREDIT: At the end it should print out the name of the
youngest and oldest person.

EXERCISES

BRANCHES

These let you evaluate conditional statements and do different
things depending on the outcome

BRANCHES

These let you evaluate conditional statements and do different
things depending on the outcome

If (CONDITION) {
 STATEMENT1
 STATEMENT2
 ETC
}

Needs to be a logical
(TRUE or FALSE)

Does all of these
things only if the

condition is TRUE

BRANCHES

if (CONDITION) {
 STATEMENT1
 STATEMENT2
 ETC
} else{
 STATEMENT3
 STATEMENT4
}

IF-ELSE

if (CONDITION) {
 STATEMENT1
 STATEMENT2
 ETC
} else if (CONDITION){
 STATEMENT3
 STATEMENT4
} else {
 STATEMENT5
}

IF-ELSE

if (today==“Saturday”) {
 print(“Yay! Weekend!”)
} else if (today==“Sunday”) {
 print(“Uh oh, Monday is coming”)
} else {
 print(“I need coffee.”)
}

EXAMPLE

1. Make a script that uses the readline() function to ask the user
to enter their name. If it is your name, print out “You are awesome!”

If it is the name of a hated enemy, print out “You are terrible!”
Otherwise, print out “Hello, [name]!”

2. Write a script that uses sample() to randomly generate two
integers between 1 and 10, and asks the user to add them

together. If the user get it correct, it prints “Good job!” If not, it
randomly generates two more integers and keeps going until the

user gets it correct.
HINT: This is pretty difficult. Break it down. First make it so that you can generate

the integers and get the answer for one problem. Then figure out how to check the
answer. Then figure out how to keep going until the user is correct. Note that your

final solution will involve both if statements and while loops.

EXERCISES

FUNCTIONS

You can actually create your own functions with arguments. Whenever
it is called R will execute the statements within it. Creating a function

means R creates a temporary environment with it while it’s in practice,
and only “keeps” the value in the return() statement.

FNAME <- function (ARG1, ARG2, ARG3, ETC) {
 STATEMENT1
 STATEMENT2
 STATEMENT3
 ETC
 return (VALUE)
}

FUNCTIONS

Here’s an example of a function that will square any number.

square <- function(x) {
 y <- x*x
 return(y)
}

> square(4)
16

FUNCTIONS

The … argument lets the user enter as many arguments as they would
like, as in the example below.

doubleMax <- function(...) {
 maxVal <- max(...)
 out <- 2*maxVal
 return(out)
}

FUNCTIONS

1. Convert your “adding” script from the previous exercise to a
function called askMath() that returns the number of tries it took

the user to get the answer correct.

2. Make a function called giveFeedback() that takes a number as
an argument. If the number is 1, it should print “You only took one
try! Great job!” If it is between 2 and 4 it should print “Pretty good!”

If it is greater than 4 it should print “Nice effort, keep working!”

3. Make a function called playGame() that calls the previous two
functions to play the adding game and give feedback at the end.

EXERCISES

1 WHILE loops

Intro to R cheat sheet

while (CONDITION) {
 STATEMENT1
 STATEMENT2
 ETC
}

2 FOR loops
for (VAR in VECTOR) {
 STATEMENT1
 STATEMENT2
 ETC
}

if (CONDITION) {
 STATEMENT1
 STATEMENT2
 ETC
} else if (CONDITION){
 STATEMENT3
 STATEMENT4
} else {
 STATEMENT5
}

3 IF and ELSE IF

FNAME <- function (ARG1, ARG2, ETC) {
 STATEMENT1
 STATEMENT2
 STATEMENT3
 ETC
 return (VALUE)
}

4 Creating functions

