
Amy Perfors

R Bootcamp Part 3

Plan

1. Loops
2. Branches
3. Functions

Loops

The purpose of a loop

While loops

while (CONDITION) {
 STATEMENT1
 STATEMENT2
 ETC
}

Needs to be a logical
(TRUE or FALSE)

Does all of these
things as long as the

condition is TRUE

While loops

[1] 1074

x <- 0
while (x < 1000) {
 x <- x + 179
}
print(x)

Exercise

Count down from 500 by 20s, stopping once the number is
negative. Print out the entire sequence (i.e., it should print 500,

480… and stop at 0).

for (VAR in VECTOR) {
 STATEMENT1
 STATEMENT2
 ETC
}

For loops

Counts through each
of the things in the

vector

Does all of these
things as long as the

condition is TRUE

for (value in 1:10) {
 answer <- 137*value
 print(answer)
}

For loops

137
274
411
548
685
822
959
1096
1233
1370

words <- c(“farewell”,”cruel”,”world”)
for (thisWord in words) {
 nLetters <- nchar(thisWord)
 blockWord <- toupper(thisWord)
 cat(blockWord,”has”,nLetters,”letters\n”)
}

Looping over vectors

FAREWELL has 8 letters
CRUEL has 5 letters
WORLD has 5 letters

Exercises

1. Use a FOR loop to count down from 500 by 20s, stopping once
the number is negative. Print out the entire sequence (i.e., it should

print 500, 480… and stop at 0). At the end, also print out how
many items total are in the sequence.

2. Create a data frame with two columns. One is the name of all of
the people in your family (or if you prefer your close friends); there
should be at least three. The second is their age. For each person
it should print out their name next to their age: e.g. “Amy is 41.”

EXTRA CREDIT: At the end it should print out the name of the
youngest and oldest person.

Branches

Branches

These let you evaluate conditional statements and do different
things depending on the outcome

Branches

These let you evaluate conditional statements and do different
things depending on the outcome

If (CONDITION) {
 STATEMENT1
 STATEMENT2
 ETC
}

Needs to be a logical
(TRUE or FALSE)

Does all of these
things only if the

condition is TRUE

If-Else

if (CONDITION) {
 STATEMENT1
 STATEMENT2
 ETC
} else{
 STATEMENT3
 STATEMENT4
}

If-Else

if (CONDITION) {
 STATEMENT1
 STATEMENT2
 ETC
} else if (CONDITION){
 STATEMENT3
 STATEMENT4
} else {
 STATEMENT5
}

Example

if (today==“Saturday”) {
 print(“Yay! Weekend!”)
} else if (today==“Sunday”) {
 print(“Uh oh, Monday is coming”)
} else {
 print(“I need coffee.”)
}

Exercises

1. Make a script that uses the readline() function to ask the user
to enter their name. If it is your name, print out “You are awesome!”

If it is the name of a hated enemy, print out “You are terrible!”
Otherwise, print out “Hello, [name]!”

2. Write a script that uses sample() to randomly generate two
integers between 1 and 10, and asks the user to add them

together. If the user get it correct, it prints “Good job!” If not, it
randomly generates two more integers and keeps going until the

user gets it correct.
HINT: This is pretty difficult. Break it down. First make it so that you can generate

the integers and get the answer for one problem. Then figure out how to check the
answer. Then figure out how to keep going until the user is correct. Note that your

final solution will involve both if statements and while loops.

Functions

Functions
You can actually create your own functions with arguments. Whenever
it is called R will execute the statements within it. Creating a function

means R creates a temporary environment with it while it’s in practice,
and only “keeps” the value in the return() statement.

FNAME <- function (ARG1, ARG2, ARG3, ETC) {
 STATEMENT1
 STATEMENT2
 STATEMENT3
 ETC
 return (VALUE)
}

Functions

Here’s an example of a function that will square any number.

square <- function(x) {
 y <- x*x
 return(y)
}

> square(4)
16

Functions

The … argument lets the user enter as many arguments as they would
like, as in the example below.

doubleMax <- function(...) {
 maxVal <- max(...)
 out <- 2*maxVal
 return(out)
}

Exercises

1. Convert your “adding” script from the previous exercise to a
function called askMath() that returns the number of tries it took

the user to get the answer correct.

2. Make a function called giveFeedback() that takes a number as
an argument. If the number is 1, it should print “You only took one
try! Great job!” If it is between 2 and 4 it should print “Pretty good!”

If it is greater than 4 it should print “Nice effort, keep working!”

3. Make a function called playGame() that calls the previous two
functions to play the adding game and give feedback at the end.

1 WHILE loops

Intro to R cheat sheet

while (CONDITION) {
 STATEMENT1
 STATEMENT2
 ETC
}

2 FOR loops
for (VAR in VECTOR) {
 STATEMENT1
 STATEMENT2
 ETC
}

if (CONDITION) {
 STATEMENT1
 STATEMENT2
 ETC
} else if (CONDITION){
 STATEMENT3
 STATEMENT4
} else {
 STATEMENT5
}

3 IF and ELSE IF

FNAME <- function (ARG1, ARG2, ETC) {
 STATEMENT1
 STATEMENT2
 STATEMENT3
 ETC
 return (VALUE)
}

4 Creating functions

