
Amy Perfors

R Bootcamp (continued)

This time

More useful things: data, data, data

Before we begin:
You should have downloaded the following datasets:

toydata.RData and toydata.csv

They are here:
http://chdsummerschool.com/resources.html

Packages

Packages

• What is a package?
• A collection of R functions and data sets added to the R “ecosystem”

• They extend the functionality of R: there’s 5000+ packages out there

• You can download them from the internet (easiest way: via RStudio)

• (It accesses the R archive network called CRAN but you really
don’t need to care about this)

Terminology

• Installed means...
• That the package files are stored on your computer

• Your version of R is able to load the package

• Loaded means...
• That R has opened the package, and “knows” what it contains

• You can use the functions / data stored in the package

• As a result:
• A package must be installed before you can load it

• A package must be loaded before you can use it

Why does it work like that???

• R is big
• 5000+ packages means can cause confusion

• Different authors will use the same name to refer to different functions!

• e.g., there are multiple packages that define a logit() function.

• Separating install from load avoids inconsistency:
• R only has to resolve the names of things in the loaded packages!

• Install everything you might want to use sometime

• Load only those things you need to use now!

The Rstudio “packages” panel

(lower right part
of RStudio)

The Rstudio “packages” panel

These are the names
of the packages that

are installed

The Rstudio “packages” panel

This describes what
the package does

The Rstudio “packages” panel

This tells you what
version you have

The Rstudio “packages” panel

Clicking this will
uninstall the

package

The Rstudio “packages” panel

This will check
whether any new
versions of the
package are

available

The Rstudio “packages” panel

This is how you
install new

packages (we’ll
come back to this)

The Rstudio “packages” panel

Click here to load
or unload a

package

loaded

unloaded

This command appears in the R console automatically: this is the “real”
way that the package gets loaded. The Rstudio package panel is just a
user-friendly way of producing this command. You could also load the
package by typing it in the console, but that’s a lot harder.

Let’s load the MASS package
(just click on it)

Installing packages

You’ll note that
this list doesn’t

have 5000
packages in it

What if you
want one that

isn’t in it?

Click here

Where to install it
from?

(ignore this:
default is fine)

Installing packages

Where should
packages be

stored?

(default is also
fine)

Installing packages

Installing packages

Should
dependencies
be installed?
Leave this
checked,

because the
answer is almost

always “yes”

Which packages to
install? This is the

important bit!

Installing packages

Start typing… and
Rstudio gives you a

list of possible
packages

Installing packages

Installing packages

Click “install” once
you’ve typed the name

of the package you want

Here’s what happens…

This is the command that
appears in the R console

Here’s what happens…

R keeps track of “dependencies”

Some packages rely on content of other
packages. So if you try to load package A,
but it requires content from package B
(which you don’t have loaded), R will load
package B too.

You generally don’t need to care about this.

Here’s what happens…

This blahdiblah means it is currently
downloading successfully…

Here’s what happens…

This last bit tells you where it is being stored temporarily

Here’s what happens…

The only thing you really need to care about
is… do you see some output that looks like
this? If yes, all is well. If you get something

else, you might have a problem

A common problem…

This means that R can’t access the
internet. The most common reasons
are (a) your internet connection isn’t

on! (b) your firewall or antivirus
software is blocking R.

So far you’ve just installed the packages
(they’re on your computer but R is not currently

using them)

Now you have to load them

> library(psych)
> library(car)

Attaching package: ‘car’

The following object is masked from ‘package:psych’:

 logit

This is the warning message
that R prints out.

It says that “logit” exists in
both packages... and that the
version in “psych” is “masked”

(i.e., you can’t access it)

Conflicts between packages?

psych and car both contain a
function called logit(). When I

load both packages, the more
recently loaded one (car)

takes precedence...

The R workspace
(global environment)

The Rstudio “environment” panel

When I create variables,
they appear in the
environment panel

> box <- “cat”
> ages <- c(12,67,32)

The Rstudio environment
panel lists information

about the variables that
you’ve created (or loaded)

The Rstudio “environment” panel

When I switch to “grid”
view I see more

information

The Rstudio “environment” panel

An attempt to summarise
the information stored in
the variable

How much of your
computer’s memory does
it take up?

How “long” is it? That is,
how many elements does it
have?

What kind of
information is
stored in this
variable? (e.g.,
numeric)

Names of the
variables

Getting rid of variables?

Now click here to delete
the selected variable(s)

Click here to
select variables

Getting rid of variables?

Click yes to delete. Click no if
you’ve made a mistake and you
want to keep the variable!

Getting rid of variables?

The selected variable(s)
are now gone. Unless
you’ve got them saved
somewhere, you can’t get
them back!

Doing it with R commands…

> library(lsr)
> who()
 -- Name -- -- Class -- -- Size --
 ages numeric 3
 box character 1

> rm(ages)
> who()
 -- Name -- -- Class -- -- Size --
 box character 1

Create the variables

Load the “lsr” package

The who() function in the lsr
package lists the variables in
a fairly readable way

The rm() function “removed” a
variable
Use who() to confirm that it’s
gone

> box <- “cat”
> ages <- c(12,67,32)

Exercises

1. Make a variable called myFavourite with the name of your favourite
food, and another called ugh with one of your least favourites. Use the
command line to make sure they are in your workspace, and then to
remove ugh.

2. Install and load the package called ggplot2.

Loading a workspace file
(i.e., an “Rdata” file)

What does it mean to load data?

• Loading means:
• You’ve copied the variables in a file into your R workspace

• You can now use these variables for your analysis

• Changing the copy doesn’t change the original
• The original stays in the file

• Any changes/deletions you make only get saved if you
choose to

• We’ll talk about saving shortly.
• But first, let’s load….

Workspace files

• The primary file format used by R is .Rdata (though it
can also load Excel, csv, etc)
• .Rdata files are saved workspaces
• They contain whatever data sets, variables, functions

etc that the workspace included when the file was
created

• How to load an .Rdata file?
• Hard(er) way: use the load() function manually

• Easy way #1: double click on the .Rdata file in
Finder/Explorer, and it should load automatically

• Easy way #2: open using the Rstudio menus

Using Rstudio to load Rdata files

This is the “file open” button

You can also use the
File menu to do the
same thing if you

want to...

Using Rstudio to load Rdata files

This opens a file open dialog box...

It will look different on different operating
systems... it will look like a familiar Windows
thing on a Windows computer, a standard
Mac thing on a Mac computer etc etc...

Browse for the file you want, and open:

Clicking open will load the “toydata.Rdata” file
you downloaded earlier

A copy of the variable(s)
saved in the file are now
added to the workspace

> load(“~/Documents/teaching/2019/summerschool/datasets/toydata.Rdata”)

A command like this will appear in the R console
(the command is what actually does the work)

Manipulating data

> expt

 id age gender treatment hormone happy sad
1 1 25 male control 6.7 2.00 6.12
2 2 24 male drug1 38.5 3.36 3.53
3 3 25 male drug2 25.0 3.40 4.82
4 4 28 male control 98.4 5.69 0.34
5 5 23 male drug1 42.4 4.56 4.48
6 6 28 male drug2 20.3 2.89 4.57
7 7 25 female control 18.5 3.18 4.82
8 8 29 female drug1 65.2 4.78 2.24
9 9 21 female drug2 56.4 4.51 2.64
10 10 26 female control 55.7 3.90 2.71
11 11 19 female drug1 41.9 2.83 2.94
12 12 30 female drug2 54.1 3.45 1.87

The variable we just loaded is
a “data frame”

We’ve actually seen one already

Remember this bit?

A data frame is
actually a bunch of
vectors all bundled
together…

> subject <- c("STAT1", "STAT1", "STAT2", “STAT2")
> person <- c("ann", "bec", "ann", "bec")
> grades <- c(82, 71, 63, 80)

> data.frame(person, subject, grades)

 person subject grades
1 ann STAT1 82
2 bec STAT1 71
3 ann STAT2 63
4 bec STAT2 80

Data frames

• Data frames are the typical way to store a data set in R

• What is a data frame?
• It is a collection of variables “bundled” together

• Organised into a “case by variable” matrix

• Each row is a “case”

• Each column is a named “variable”

• Let’s go through this idea more slowly…

Here are the 7 vectors

> expt

 id age gender treatment hormone happy sad
1 1 25 male control 6.7 2.00 6.12
2 2 24 male drug1 38.5 3.36 3.53
3 3 25 male drug2 25.0 3.40 4.82
4 4 28 male control 98.4 5.69 0.34
5 5 23 male drug1 42.4 4.56 4.48
6 6 28 male drug2 20.3 2.89 4.57
7 7 25 female control 18.5 3.18 4.82
8 8 29 female drug1 65.2 4.78 2.24
9 9 21 female drug2 56.4 4.51 2.64
10 10 26 female control 55.7 3.90 2.71
11 11 19 female drug1 41.9 2.83 2.94
12 12 30 female drug2 54.1 3.45 1.87

They have a special relationship...

> expt

 id age gender treatment hormone happy sad
1 1 25 male control 6.7 2.00 6.12
2 2 24 male drug1 38.5 3.36 3.53
3 3 25 male drug2 25.0 3.40 4.82
4 4 28 male control 98.4 5.69 0.34
5 5 23 male drug1 42.4 4.56 4.48
6 6 28 male drug2 20.3 2.89 4.57
7 7 25 female control 18.5 3.18 4.82
8 8 29 female drug1 65.2 4.78 2.24
9 9 21 female drug2 56.4 4.51 2.64
10 10 26 female control 55.7 3.90 2.71
11 11 19 female drug1 41.9 2.83 2.94
12 12 30 female drug2 54.1 3.45 1.87

The 5th element of
each variable

refers to the same
person (the same

“case”)

> expt$age
 [1] 25 24 25 28 23 28 25 29 21 26 19 30

expt$age tells R to look for
a vector called age stored
in a data frame called expt.

> expt

 id age gender treatment hormone happy sad
1 1 25 male control 6.7 2.00 6.12
2 2 24 male drug1 38.5 3.36 3.53
3 3 25 male drug2 25.0 3.40 4.82
4 4 28 male control 98.4 5.69 0.34
5 5 23 male drug1 42.4 4.56 4.48
6 6 28 male drug2 20.3 2.89 4.57
7 7 25 female control 18.5 3.18 4.82
8 8 29 female drug1 65.2 4.78 2.24
9 9 21 female drug2 56.4 4.51 2.64
10 10 26 female control 55.7 3.90 2.71
11 11 19 female drug1 41.9 2.83 2.94
12 12 30 female drug2 54.1 3.45 1.87

But! They are still
ordinary variables…

> expt$gender
 [1] male male male male male
 [6] male female female female female
 [11] female female
 Levels: male female

Hm. That’s odd. We’ll
come back to that one in a
moment

> expt

 id age gender treatment hormone happy sad
1 1 25 male control 6.7 2.00 6.12
2 2 24 male drug1 38.5 3.36 3.53
3 3 25 male drug2 25.0 3.40 4.82
4 4 28 male control 98.4 5.69 0.34
5 5 23 male drug1 42.4 4.56 4.48
6 6 28 male drug2 20.3 2.89 4.57
7 7 25 female control 18.5 3.18 4.82
8 8 29 female drug1 65.2 4.78 2.24
9 9 21 female drug2 56.4 4.51 2.64
10 10 26 female control 55.7 3.90 2.71
11 11 19 female drug1 41.9 2.83 2.94
12 12 30 female drug2 54.1 3.45 1.87

But! They are still
ordinary variables…

> expt$happy
 [1] 2.00 3.36 3.40 5.69 4.56 2.89 3.18
 [8] 4.78 4.51 3.90 2.83 3.45

Okay, clearly this $ trick
works for all of them...

> expt

 id age gender treatment hormone happy sad
1 1 25 male control 6.7 2.00 6.12
2 2 24 male drug1 38.5 3.36 3.53
3 3 25 male drug2 25.0 3.40 4.82
4 4 28 male control 98.4 5.69 0.34
5 5 23 male drug1 42.4 4.56 4.48
6 6 28 male drug2 20.3 2.89 4.57
7 7 25 female control 18.5 3.18 4.82
8 8 29 female drug1 65.2 4.78 2.24
9 9 21 female drug2 56.4 4.51 2.64
10 10 26 female control 55.7 3.90 2.71
11 11 19 female drug1 41.9 2.83 2.94
12 12 30 female drug2 54.1 3.45 1.87

But! They are still
ordinary variables…

Clicking here lets you see the
entire dataset

You can also view the dataset
using RStudio

Clicking it again shows you the dataset in another panel.

You can also view the dataset
using RStudio

> expt$age
 [1] 25 24 25 28 23 28 25 29 21 26 19 30

> expt$age + 100
 [1] 125 124 125 128 123 128 125 129 121 126 119 130

> expt$age[1]
[1] 25

Variables inside data frames behave
the same way as any other variable

You can change the values of variables
in a data frame in the usual way...
> expt$age[1] <- 1000
> expt

 id age gender treatment hormone happy sad
1 1 1000 male control 6.7 2.00 6.12
2 2 24 male drug1 38.5 3.36 3.53
3 3 25 male drug2 25.0 3.40 4.82
4 4 28 male control 98.4 5.69 0.34
5 5 23 male drug1 42.4 4.56 4.48
6 6 28 male drug2 20.3 2.89 4.57

etc

> expt$age[1] <- 25 # change it back!

You can add variables to a data frame...

> expt$over25 <- expt$age > 25
> expt

 id age gender treatment hormone happy sad over25
1 1 25 male control 6.7 2.00 6.12 FALSE
2 2 24 male drug1 38.5 3.36 3.53 FALSE
3 3 25 male drug2 25.0 3.40 4.82 FALSE
4 4 28 male control 98.4 5.69 0.34 TRUE
5 5 23 male drug1 42.4 4.56 4.48 FALSE
6 6 28 male drug2 20.3 2.89 4.57 TRUE
7 7 25 female control 18.5 3.18 4.82 FALSE
8 8 29 female drug1 65.2 4.78 2.24 TRUE
9 9 21 female drug2 56.4 4.51 2.64 FALSE
10 10 26 female control 55.7 3.90 2.71 TRUE
11 11 19 female drug1 41.9 2.83 2.94 FALSE
12 12 30 female drug2 54.1 3.45 1.87 TRUE

Removing them is even easier...

> expt$over25 <- NULL
> expt

 id age gender treatment hormone happy sad
1 1 25 male control 6.7 2.00 6.12
2 2 24 male drug1 38.5 3.36 3.53
3 3 25 male drug2 25.0 3.40 4.82
4 4 28 male control 98.4 5.69 0.34
5 5 23 male drug1 42.4 4.56 4.48
6 6 28 male drug2 20.3 2.89 4.57
7 7 25 female control 18.5 3.18 4.82
8 8 29 female drug1 65.2 4.78 2.24
9 9 21 female drug2 56.4 4.51 2.64
10 10 26 female control 55.7 3.90 2.71
11 11 19 female drug1 41.9 2.83 2.94
12 12 30 female drug2 54.1 3.45 1.87

NULL is a special “value” in R that means “this variable does not exist” or
“it has no value”. It is different to NA, which means “the variable exists (and

in principle has a value), but the value is missing/unknown”

> expt$age[1]
[1] 25

> expt[1, "age"]
[1] 25

expt is a data frame, and
we’re requesting the value

found in the 1st row, and the
column named “age”

> expt[1, 2]
[1] 25

Selecting elements from a data frame

expt is a data frame, and
we’re requesting the value

found in the 1st row, and the
2nd column

expt$age is a
vector, and we’re
requesting the 1st

element of it

> expt[4,]

 id age gender treatment hormone happy sad
4 4 28 male control 98.4 5.69 0.34

Selecting a whole row

> expt[c(1,4,7),]

 id age gender treatment hormone happy sad
1 1 25 male control 6.7 2.00 6.12
4 4 28 male control 98.4 5.69 0.34
7 7 25 female control 18.5 3.18 4.82

Selecting multiple rows

Selecting rows and columns?

> expt[c(1,4,7), c("age","gender")]

 age gender
1 25 male
4 28 male
7 25 female

> theMales <- expt$gender == "male"
> expt[theMales,]

 id age gender treatment hormone happy sad
1 1 25 male control 6.7 2.00 6.12
2 2 24 male drug1 38.5 3.36 3.53
3 3 25 male drug2 25.0 3.40 4.82
4 4 28 male control 98.4 5.69 0.34
5 5 23 male drug1 42.4 4.56 4.48
6 6 28 male drug2 20.3 2.89 4.57

Selecting rows that match a criterion?

> malesOnly <- subset(expt, gender == “male")
> malesOnly

 id age gender treatment hormone happy sad
1 1 25 male control 6.7 2.00 6.12
2 2 24 male drug1 38.5 3.36 3.53
3 3 25 male drug2 25.0 3.40 4.82
4 4 28 male control 98.4 5.69 0.34
5 5 23 male drug1 42.4 4.56 4.48
6 6 28 male drug2 20.3 2.89 4.57

Using subset() to do the same thing

Using subset() to do the same thing

This is a
function

These are the two
arguments

This is the
name of the
data frame

that contains
only males

> malesOnly <- subset(expt, gender == “male")

Exercises

1. Make a new dataframe called d which is just a copy of expt.

2. In d, add 1.5 to every entry for hormone.

3. Create a new variable in d called depressed which is sad minus
happy.

4. Find out how many people are over 25 and took more than 20.0 of
the hormone.

5. Create a new dataframe consisting of just the control condition.

6. Create another new dataframe consisting of both drug1 and drug2
conditions.

Factors

Okay, what’s going on with “gender”?

> expt$gender

 [1] male male male male male male female
 [8] female female female female female
Levels: female male

This is new!

expt$gender is actually a “factor”...

> expt$gender

 [1] male male male male male male female
 [8] female female female female female
Levels: female male

> class(expt$gender)
[1] "factor"

Factors “look” like character data,
but they’re a bit more subtle than that...

1 2 3
In R, nominal scale data are

stored as factors

1902 1932 1992

date

Interval and ratio scale data are
stored as numeric variables

0.0 0.2 0.4 0.6 0.8 1.0

Probability of a Blue Light

Confidence in Blue = 91%

> > Ordinal scale data are stored as
ordered factors

What’s this about?

• R needs to know if a variable is nominal scale
• A “factor” is a nominal scale variable

• Created using factor() and as.factor() [not in this class]

Saving your current
variables to a file

Suppose you’ve done some work and
you want to save the workspace...

I must have done some work, there’s all
this new stuff in the workspace!

The save button is your friend

Browse, type a filename, and click save

Now the file is saved

As before, the actual command
shows up in the R console

save.image(“~/Documents/teaching/2019/summerschool/datasets/toydata_modified.RData”)

Importing data from a text
(“csv”) file

CSV is a standard format

The raw data is just a plain
text file: CSV stands for

“comma separated value”

CSV files are usually
opened by spreadsheets,
and produce “rectangular”

data like this...

CSV is a standard format

> expt

 id age gender treatment hormone happy sad
1 1 25 male control 6.7 2.00 6.12
2 2 24 male drug1 38.5 3.36 3.53
3 3 25 male drug2 25.0 3.40 4.82
4 4 28 male control 98.4 5.69 0.34
5 5 23 male drug1 42.4 4.56 4.48
6 6 28 male drug2 20.3 2.89 4.57
7 7 25 female control 18.5 3.18 4.82
8 8 29 female drug1 65.2 4.78 2.24
9 9 21 female drug2 56.4 4.51 2.64
10 10 26 female control 55.7 3.90 2.71
11 11 19 female drug1 41.9 2.83 2.94
12 12 30 female drug2 54.1 3.45 1.87

In R, a CSV file gets
imported as a data frame

CSV is a standard format

Importing CSV data using Rstudio

Click on this…

Importing CSV data using Rstudio

You may have to install some other packages…

Importing CSV data using Rstudio
Once they’re installed, browse over to the file you want…

Importing CSV data using Rstudio
When you see it, go ahead and “Import”

> toydata <- read_csv(“~/Documents/teaching/2019/summerschool/datasets/
toydata.csv”)
> View(toydata)

These are the actual
R commands that
Rstudio used to
import the data

Rstudio opens a
tab showing you
the contents of
the data frame

you just imported

These are the actual
R commands that
Rstudio used to
import the data

And there it is in the
workspace!

> toydata <- read_csv(“~/Documents/teaching/2019/summerschool/datasets/
toydata.csv”)
> View(toydata)

Scripts

Working with data

• What do we know how do to?
• Load data from .Rdata files and .csv files

• Type commands to get R to make output

• Save data / R output to .Rdata files

• Install and load packages to extend R functionality

• What’s missing?
• How to save a collection of R commands to run later

• i.e. scripts

Scripts

• What is an R script?
• R scripts are text files, and have a .R extension

• They contain a sequence of R commands that R will
execute when the script is “sourced” (i.e., run)

• How do I use scripts?
• Type (or paste) R commands into the text file

• Save the script (usually in the same folder as the
data)

• Use the “source” button to run it.

Click here to open a saved script

Or here to create a new one

Or here to create a new one

An empty script…

Type some R commands here…

These comments won’t
“do” anything, but

they’re useful to you

Always use comments!
It’s amazing what you’ll

forget if you don’t.

Type some R commands here…

These are the R
commands that do all

of the work

Type some R commands here…

If this is red it means
there are unsaved

changes to your script

Type some R commands here…

Click here to save it!

Hey look, another save window!

Save scripts
with a .R at

the end

Click here to
run the script

Scripts “run” from
top to bottom

this is my first script
for the summer school

define some variables
age <- 19
box <- "cat"

print something
print (age)

What does R do?

nothing; these are
comments

this is my first script
for the summer school

define some variables
age <- 19
box <- "cat"

print something
print (age)

What does R do?

create a variable
called age with the

value 19

this is my first script
for the summer school

define some variables
age <- 19
box <- "cat"

print something
print (age)

What does R do?

create a variable
called box with the

value “cat”

this is my first script
for the summer school

define some variables
age <- 19
box <- "cat"

print something
print (age)

What does R do?

nothing; this is an
empty line and a

comment

this is my first script
for the summer school

define some variables
age <- 19
box <- "cat"

print something
print (age)

What does R do?

print the value in the
variable age

this is my first script
for the summer school

define some variables
age <- 19
box <- "cat"

print something
print (age)

Things have
happened!

Help

print something
print(box)
print(age)

Suppose you want to know more about a function…

Every function comes with documentation

help(print) ?printor

R documentation
When you type help(), it shows up in the lower right panel

R documentation

tells you what
function the

documentation
is for

R documentation

quickly
describes what

the function
does

R documentation

a longer
description of

what the
function does

R documentation

what you have
to type in order

to get the
function to run

R documentation

what you have
to type in order

to get the
function to run

which
arguments are

obligatory

indicates there
are optional
arguments

R documentation

don’t worry
about this!

…scrolling down…

here it tells you
what it needs
to take as an

argument

…scrolling down…

remember this
was something

you had to
include

(in this case, it
is the object

that is printed)

…scrolling down…

these are other
things you

might want to
specify but

don’t need to

unless told
otherwise you
can probably

ignore most of
them

…scrolling down…

but it also never
hurts to play

around!

… scrolling even more…

you can pretty
much ignore all
of this (it’s far
advanced of
what you’ll

need usually)

the end of the scrolling…

These can be
useful to make
sense of how

to use some of
the optional
arguments.

But if they are
confusing it’s
because it’s

almost certainly
not something
you need to
understand!

Exercises

1. Write a script which begins with two variables, weightInKilos and
sizeInCm. Set those to a reasonable weight and size. Then convert
the kilos to pounds (1 kilo = 2.2 pounds) and cm to inches (2.54 cm =
1 inch) and save those values in new variables. Print the new variables
out. Save your script as conversion.R and run it.

2. Write a script which loads the toyData dataset, creates two subset
datasets (one with males, one with females) and for each one prints
out the people with happiness greater than 3.0. Save your script as
happyAnalysis.R and run it. Clear your entire workspace and then run
it again.

> expt

 id age gender treatment hormone happy sad
1 1 25 male control 6.7 2.00 6.12
2 2 24 male drug1 38.5 3.36 3.53
3 3 25 male drug2 25.0 3.40 4.82
4 4 28 male control 98.4 5.69 0.34
5 5 23 male drug1 42.4 4.56 4.48
6 6 28 male drug2 20.3 2.89 4.57
7 7 25 female control 18.5 3.18 4.82
8 8 29 female drug1 65.2 4.78 2.24
9 9 21 female drug2 56.4 4.51 2.64
10 10 26 female control 55.7 3.90 2.71
11 11 19 female drug1 41.9 2.83 2.94
12 12 30 female drug2 54.1 3.45 1.87

8 Packages: 5000+ available online 10

9

install load

put on computer make available to R

install.packages(“lsr”) library(“lsr”)

data and data frames
load data from menu or with load())

expt$age

expt$over25 <- expt$age > 25

selects the variable age
expt$age[1] or expt[1,”age”]

selects the first case of age

creates a new variable called over25
which is true if age is over 25

expt$over25 <- NULL
removes the variable over25

expt[c(1,4,7), c(“age”,“gender”)

data manipulation

selects rows 1,4,7 and age/gender columns

subset (expt, gender==“male”)
select all males out of dataset

class(expt$gender)
tells you gender is a nominal scale variable

Intro to R cheat sheet

11 Saving and importing

Scripts let you run and save
series of commands

- Save as .RData, using menu or save.image()
- Can load .csv, using menu or read.csv()

save as .R file

run by choosing “Source”
(once it’s saved)

comments don’t do
anything in R but tell you
what each part does

commands are just like you
typed them into the console

help(functionName)
e.g. help(print)

Intro to R cheat sheet

12

13

